Dually Fluorescent Core-Shell Microgels for Ratiometric Imaging in Live Antigen-Presenting Cells

نویسندگان

  • Xianfeng Zhou
  • Fengyu Su
  • Yanqing Tian
  • Deirdre R. Meldrum
چکیده

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic radius of ∼ 450 nm at 25 °C (in vitro) and ∼ 190 nm at 37 °C (in vivo). The microgel's ability of escaping from lysosome into cytosol makes the microgel be a potential candidate for cytosolic delivery of sensors/probes. Non-invasive imaging/sensing in Antigen-presenting cells (APCs) was feasible by monitoring the changes of fluorescence intensity ratios. Thus, these biocompatible microgels-based imaging/sensing agents may be expected to expand current molecular imaging/sensing techniques into methods applicable to studies in vivo, which could further drive APC-based treatments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy† †Electronic supplementary information (ESI) available: Experimental procedures, characterisation data, Scheme S1 and Fig. S1–S3. See DOI: 10.1039/c4sc02600d

We report a ratiometric phosphorescence sensory system for hypochlorite (ClO ) based on core–shell structured silica nanoparticles. Two phosphorescent iridium(III) complexes were immobilised in the inner solid core and outer mesoporous layer of the nanoparticles, respectively. The former is insensitive to ClO and thus serves as an internal standard to increase the accuracy and precision, while ...

متن کامل

Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy.

We report a ratiometric phosphorescence sensory system for hypochlorite (ClO-) based on core-shell structured silica nanoparticles. Two phosphorescent iridium(iii) complexes were immobilised in the inner solid core and outer mesoporous layer of the nanoparticles, respectively. The former is insensitive to ClO- and thus serves as an internal standard to increase the accuracy and precision, while...

متن کامل

Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging.

We have judiciously constructed a novel ICT-based ratiometric OCl(-) probe capable of ratiometric imaging in the live cells based on the new OCl(-)-promoted de-diaminomaleonitrile reaction.

متن کامل

Engineering a FRET strategy to achieve a ratiometric two-photon fluorescence response with a large emission shift and its application to fluorescence imaging.

Two-photon excitation (TPE) probe-based fluorescence imaging has become one of the most attractive diagnostic techniques to investigate biomolecules and biological events in live cells and tissues. At the current stage most of the TPE-based sensing is reflected by fluorescence intensity changes. Nevertheless the mere altering of intensity could be facilely affected by ambient conditions. On the...

متن کامل

Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels.

Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 microm and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm- co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of doub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014